

B/L CIRCUIT DIAGRAM

Pln d	ssignment	Pln d	ssignment	Pln c	ssignment	Pln	ussignment	Pln o	ssignmen
PIN	SYMBOL	PIN	SYMBOL	PIN	SYMBOL	PIN	SYMBOL	PIN	SYMBOL
1	LEDK	9	R4	17	G4	25	B4	33	CLK
2	LEDA	10	R5	18	G5	26	B5	34	GND
3	GND	11	R6	19	G6	27	B6	35	HSYNC
4	VCC	12	R7	20	G7	28	В7	36	VSYNC
5	R0	13	G0	21	B0	29	GND	37	NC(XR)
6	R1	14	G1	22	B1	30	DISP	38	NC(YD)
7	R2	15	G2	23	B2	31	DEN	39	NC(XL)
8	R3	16	G3	24	ВЗ	32	GND	40	NC(YU)

NOTES:

- 1.Display size:4.3"TFT
- 2. Viewing direction:full view
- 3.Display mode:Transmissive/Normal Black/Anti-glare 4.Operation temperature:-20°C~+70°C
- 5.Storage temperature:-30°C~+80°C
- 6.Driver IC:NV3047E
- 7.Power supply voltage:3.3V 8.Backlight :White(12 LED)/12.8(TYP)V/60mA
- 9.Brighness:500(TYP)cd/m2
- 10.ROHS must be complied
- * Unspecification tolerance are ±0.2mm
- * The dimension with mark brackets "()" just for reference

Compliance: RohS III (2015/863/EU)

Tolerances:			Date	Name						
l			11/24	dr						
					YDP LCD I 430 R					
					_					
						00		Pogo		
			kni	tter-s	witch	30 55	/3	Page		
Renamed	02/25	dr				30 00	. •	1/25		
Modifications	Date	Name								

PRODUCT SPECIFICATION

4.3" TFT LCD MODULE MODEL: YDP LCD I 430 R Ver:1.1

< >> Preliminary Specification

< ◆> Finally Specification

	CUSTOMER'S APPROVAL					
CUSTOMER:						
SIG	NATURE:	DATE:				

APPROVED	PM	PD	PREPARED
ВҮ	REVIEWED	REVIEWED	ВҮ
TFT X. B 2024010;	TFT S. G. H 20240106	TFT 周福云 2024010g	TFT L. Q 20240100

Revision History

Revision	Date	Originator	Detail	Remarks
1.0	2023.12.30	LL	Initial Release	
1.1	2024.01.06	LQ	Modify Outline Drawing(B)	P25

Table of Contents

No.	Item	Page
1. Ger	neral Description	4
2. Mod	dule Parameter	4
3. Abs	olute Maximum Ratings	4
4. DC	Characteristics	5
5. Bac	klight Characteristic	5
5.	1. Backlight Characteristics	5
5.	2. Backlighting circuit	5
6. Opt	ical Characteristics	6
6.	1. Optical Characteristics	6
6.	2. Definition of Response Time	6
6.	3. Definition of Contrast Ratio	7
6.	4. Definition of Viewing Angles	7
6.	5. Definition of Color Appearance	7
6.	6. Definition of Surface Luminance, Uniformity and Transmittance	8
7. Blo	ck Diagram and Power Supply	9
8. Inte	rface Pins Definition	10
9. AC	Characteristics	11
9.	Parallel 24 bit RGB Input Timing Table	11
9.	2. SYNC Mode Timing Diagram	12
9.	3. SYNC-DE Mode Timing Diagram	12
9.	4. Power On Sequence	13
9.	5. Power Off Sequence	14
10. Qı	ality Assurance	15
10).1. Purpose	15
10	0.2. Standard for Quality Test	15
10	D.3. Nonconforming Analysis & Disposition	15
10	D.4. Agreement Items	15
10	D.5. Standard of the Product Visual Inspection	15
10	D.6. Inspection Specification	16
10	0.7. Classification of Defects	20
10	D.8. Identification/marking criteria	20
10	D.9. Packing	20
11. Re	liability Specification	21
12. Pr	ecautions and Warranty	22
1:	2.1. Safety	22
1:	2.2. Handling	22
	2.3. Storage	
	2.4. Metal Pin (Apply to Products with Metal Pins)	
1:	2.5. Operation	23
1:	2.6. Static Electricity	23
1:	2.7. Limited Warranty	23
13. Pa	ckaging	24

1. General Description

The specification is a transmissive type color active matrix liquid crystal display (LCD) which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT-LCD panel, driver ICs and a backlight unit.

2. Module Parameter

Features	Details	Unit
Display Size(Diagonal)	4.3"	
LCD type	IPS TFT	
Display Mode	Transmissive /Normally Black	
Resolution	480 RGB x 272	Pixels
View Direction	Full view	Best Image
Module Outline	105.5(H) x 67.2 (V) x 2.95(T) (Note1)	mm
Active Area	95.04(H) x 53.856(V)	mm
Pixel Pitch	198(H) x 198(V)	um
Pixel Arrangement	RGB Vertical stripe	
Display Colors	16.7M	
Interface	24-bit RGB interface	
Driver IC	NV3047E	-
With or Without Touch Panel	Without	
Operating Temperature	-20~70	°C
Storage Temperature	-30~80	°C
Weight	TBD	g

Note 1: Exclusive hooks, posts, FFC/FPC tail etc.

3. Absolute Maximum Ratings

GND=0V, Ta=25°C

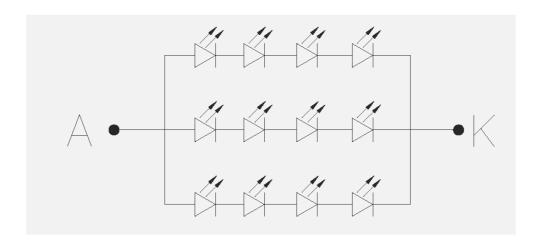
ltem	Symbol	Min.	Max.	Unit
Supply Voltage	VCC	-0.3	4.6	V
Storage temperature	Тѕтс	-30	+80	°C
Operating temperature	Тор	-20	+70	°C

Note 1: If Ta below 50°C, the maximal humidity is 90%RH, if Ta over 50°C, absolute humidity should be less than 60%RH.

Note 2: The response time will be extremely slow when the operating temperature is around -10 $^{\circ}$ C, and the back ground will become darker at high temperature operating.

4. DC Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	
Digital Interface Supply Voltage	9	VCC	3.0	3.3	3.6	V
Logic Low input voltage	VIL	GND	-	0.3*VCC	V	
Logic High input voltage	V _{IH}	0.7*VCC	-	VCC	V	
Logic Low output voltage	Vol	GND	-	GND+0.4	V	
Logic High output voltage		Voн	VCC-0.4	-	VCC	٧
Current Consumption All White	Logic Analog	Icc+ lin	-	TBD	-	mA


5. Backlight Characteristic

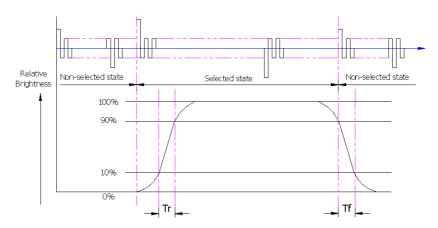
5.1. Backlight Characteristics

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	VF	Ta=25 °C, I _F =20mA/LED	11.6	12.8	13.2	٧
Forward Current	lF	Ta=25 °C, V _F =3.2V/LED	-	60	-	mΑ
Power dissipation	Pb		-	768	1	mVV
Uniformity	Avg		-	80	-	%
LED working life(25°C)	-		-	30,000	-	Hrs
Drive method	Constant current					
LED Configuration	12 V	Vhite LEDs (4 LEDs in one	string an	d 3 group	s in paral	lel)

Note1: LED life time defined as follows: The final brightness is at 50% of original brightness. The environmental conducted under ambient air flow, at Ta= 25 ± 2 °C,60%RH ±5 %, I_F=20mA/LED.

5.2. Backlighting circuit

6. Optical Characteristics

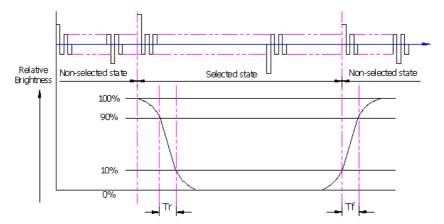

6.1. Optical Characteristics

Ta=25°C, VCC=3.3V

	ltem		Symbol	Condition	9	Specificati	on	Unit
	iten	I	Symbol	Condition	Min.	Тур.	Max.	Offit
	Luminand	ce on						
	$TFT(I_{_f} \!=\! 20r$	mA/LED)	Lv	Normally	400	500	-	cd/m²
 	Contrast ratio	(See 6.3)	CR	viewing angle θx = φy =0°	800	1000	-	
Backlight On (Transmissive Mode)	Response time (See 6.2)		TR+TF	θχ – φγ –0°	-	30	35	ms
niss	Dad		Xr		•	TBD	•	
l su		Red	YR		•	TBD	•	
Ta		Green	Xg		•	TBD	-	
<u> </u>	Chromaticity	Green	YG			TBD	•	
º	Transmissive	Blue	Хв		•	TBD	•	
lig	(See 6.5)	Diue	Yв		ı	TBD	•	
울		\	Xw		•	TBD	-	
m		White	Υw		-	TBD	•	
		Horizontal	Өх+		80	85	-	
	Viewing Angle	HOHZOHIAI	Өх-	Center CR≥10	80	85	-	Deg.
	(See 6.4)	Vertical	φΥ+	Center Cive 10	80	85	-	Deg.
		vertical	φΥ-		80	85	-	
	NTSC Ratio	(Gamut)			-	50	-	%

6.2. Definition of Response Time

6.2.1. Normally Black Type (Negative)



Tr is the time it takes to change form non-selected stage with relative luminance 10% to selected state with relative luminance 90%;

Tf is the time it takes to change from selected state with relative luminance 90% to non-selected state with relative luminance 10%.

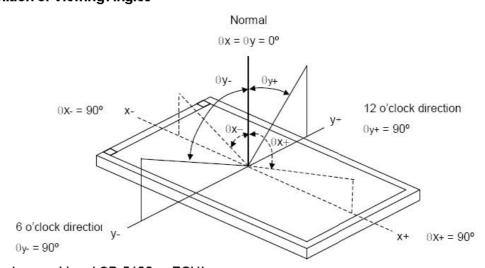
Note: Measuring machine: LCD-5100

6.2.2. Normally White Type (Positive)

Tr is the time it takes to change form non-selected stage with relative luminance 90% to selected state with relative luminance 10%;

Tf is the time it takes to change from selected state with relative luminance 10% to non-selected state with relative luminance 90%;

Note: Measuring machine: LCD-5100 or EQUI

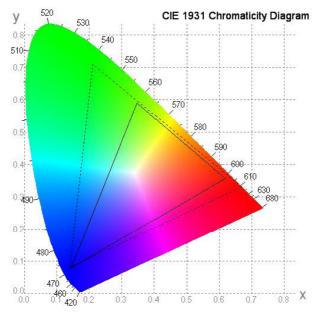

6.3. Definition of Contrast Ratio

Contrast is measured perpendicular to display surface in reflective and transmissive mode. The measurement condition is:

Measuring Equipment	Eldim or Equivalent		
Measuring Point Diameter	3mm//1mm		
Measuring Point Location	Active Area centre point		
To at mattern	A: All Pixels white		
Test pattern	B: All Pixel black		
Contrast setting	Maximum		

Definitions: CR (Contrast) = Luminance of White Pixel / Luminance of Black Pixel

6.4. Definition of Viewing Angles

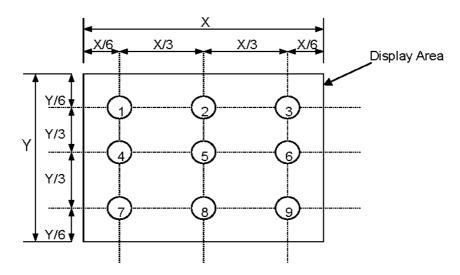

Measuring machine: LCD-5100 or EQUI

6.5. Definition of Color Appearance

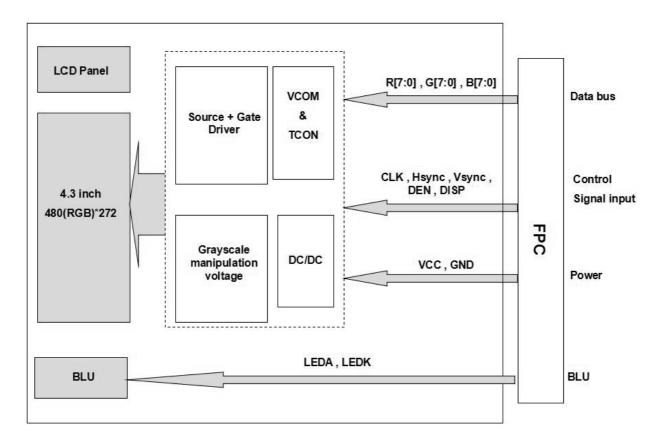
R,G,B and W are defined by (x, y) on the IE chromaticity diagram

NTSC=area of RGB triangle/area of NTSC triangleX100%

Measuring picture: Red, Green, Blue and White (Measuring machine: BM-7)



6.6. Definition of Surface Luminance, Uniformity and Transmittance


Using the transmissive mode measurement approach, measure the white screen luminance of the display panel and backlight.

- 6.6.1. Surface Luminance: L_V = average (L_{P1}:L_{P9})
- 6.6.2. Uniformity = Minimal (LP1:LP9) / Maximal (LP1:LP9) * 100%
- 6.6.3. Transmittance = L_V on LCD / L_V on Backlight * 100%

Note: Measuring machine: BM-7

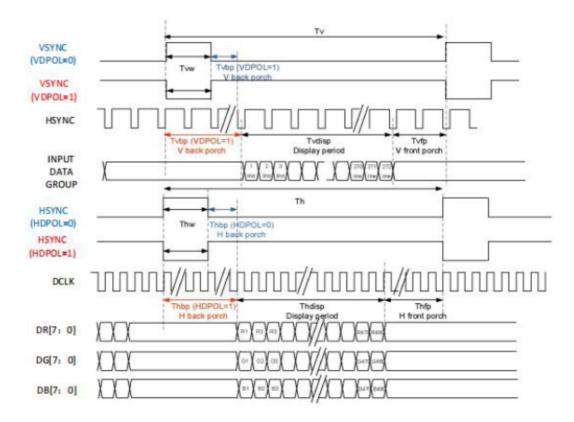
7. Block Diagram and Power Supply

8. Interface Pins Definition

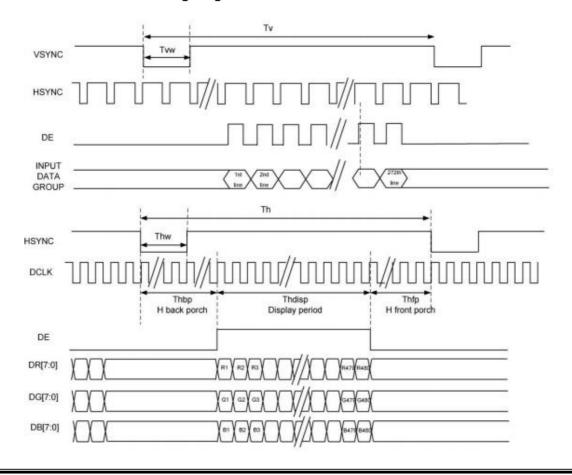
No.	Symbol	Function	Remark
1	LEDK	Backlight Cathode	
2	LEDA	Backlight Anode	
3	GND	Ground	
4	VCC	Power source	
5	R0	Red data signal	
6	R1	Red data signal	
7	R2	Red data signal	
8	R3	Red data signal	
9	R4	Red data signal	
10	R5	Red data signal	
11	R6	Red data signal	
12	R7	Red data signal	
13	G0	Green data signal	
14	G1	Green data signal	
15	G2	Green data signal	
16	G3	Green data signal	
17	G4	Green data signal	
18	G5	Green data signal	
19	G6	Green data signal	
20	G7	Green data signal	
21	B0	Blue data signal	
22	B1	Blue data signal	
23	B2	Blue data signal	
24	B3	Blue data signal	
25	B4	Blue data signal	
26	B5	Blue data signal	
27	B6	Blue data signal	
28	B7	Blue data signal	
29	GND	Ground	
30	DISP	Display on/off signal. DISP="H" Display on; DISP="L" Display off	
31	DEN	Input data enable control.	
32	GND	Ground	
33	CLK	Clock signal to sample each data	
34	GND	Ground	
35	HSYNC	Horizontal synchronizing signal	
36	VSYNC	Vertical synchronizing signal	
37	NC(XR)	No connection	
38	NC(YD)	No connection	
39	NC(XL)	No connection	
40	NC(YU)	No connection	

9. AC Characteristics

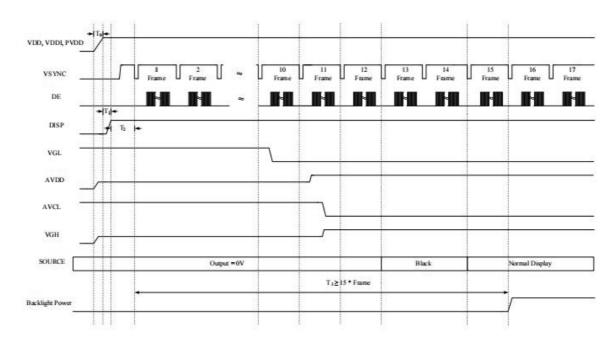
9.1. Parallel 24 bit RGB Input Timing Table


10	tem	Symbol	Min.	Тур.	Max.	Unit	Remark
DCLK Frequency		Felk	8	9	12	MHz	
DCLK	C Period	Telk	83	111	125	ns	
Fram	ne Pate	FR			75	Hz	
Line	Period	Tlp	24			us	
	Period Time	Th		531		DCLK	
	Display Period	Thdisp		480		DCLK	
HSYNC	Back Porch	Thbp		43		DCLK	By H_Blanking setting
	Front Porch	Thfp		8		DCLK	
	Pulse Width	Thw		4		DCLK	
	Period Time	Tv		292		Н	
	Display Period	Tvdisp		272		Н	
VSYNC	Back Porch	Tvbp		12		Н	By V_Blanking setting
8	Front Porch	Tvfp		8		Н	
	Pulse Width	Tvw		4		Н	

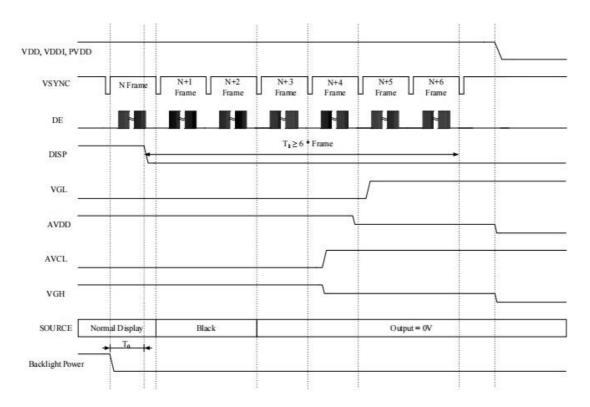
Note:


^{1.} It is necessary to keep Tvbp=12, Tvfp=8, Tvw=4 and Thbp=43, Thfp=8 Thw=4 in sync mode.

The Max Value and Min Value of porch must satisfy the range of Frame Pate and Line Period
 It is necessary to keep Thbp>10, Tvbp+Tvfp<128


9.2. SYNC Mode Timing Diagram

9.3. SYNC-DE Mode Timing Diagram



9.4. Power On Sequence

Symbol	Description	Min. Time	Unit
T ₀	Determined by the external power	0	ms
T_1	Time from stable VDD, VDDI, PVDD set-up to DISP	0	ms
T ₂	Time from DISP="High" to the first VSYNC	0	ms
T ₃	Display Signal output to Backlight Power on	15 * Frame	ms

9.5. Power Off Sequence

Symbol	Description	Min. Time	Unit	
T ₀	Backlight power off to DISP="Low"	5	ms	
T_1	DISP="Low" to IC internal voltage discharge complete	6 * Frame	ms	

10. Quality Assurance

10.1.Purpose

This standard for Quality Assurance assures the quality of LCD module products supplied to customer.

10.2. Standard for Quality Test

10.2.1. Sampling Plan:

GB2828.1-2012

Single sampling, general inspection level II

10.2.2. Sampling Criteria:

Visual inspection: AQL 1.5 Electrical functional: AQL 0.65.

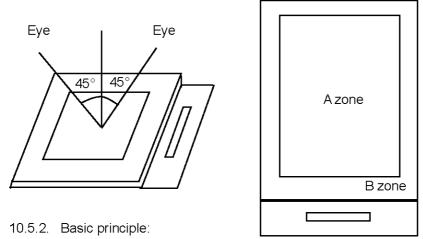
10.2.3. Reliability Test:

Detailed requirement refer to Reliability Test Specification.

10.3. Nonconforming Analysis & Disposition

- 10.3.1. Nonconforming analysis:
 - 10.3.1.1. Customer should provide overall information of non-conforming sample for their complaints.
 - 10.3.1.2. After receipt of detailed information from customer, the analysis of nonconforming parts usually should be finished in one week.
 - 10.3.1.3. If cannot finish the analysis on time, customer will be notified with the progress status.
- 10.3.2. Disposition of nonconforming:
 - 10.3.2.1. Non-conforming product over PPM level will be replaced.
 - 10.3.2.2. The cause of non-conformance will be analyzed. Corrective action will be discussed and implemented.

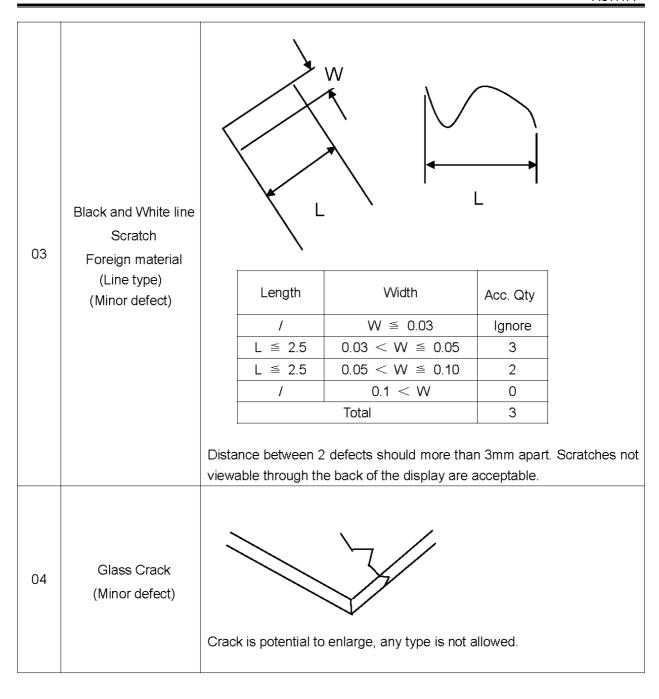
10.4. Agreement Items

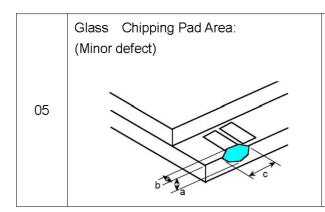

Shall negotiate with customer if the following situation occurs:

- 10.4.1. There is any discrepancy in standard of quality assurance.
- 10.4.2. Additional requirement to be added in product specification.
- 10.4.3. Any other special problem.

10.5. Standard of the Product Visual Inspection

- 10.5.1. Appearance inspection:
 - 10.5.1.1. The inspection must be under illumination about $1000 1500 \, lx$, and the distance of view must be at $30 \, cm \pm 2 \, cm$.
 - 10.5.1.2. The viewing angle should be 45° from the vertical line without reflection light or follows customer's viewing angle specifications.


10.5.1.3. Definition of area: A Zone: Active Area, B Zone: Viewing Area,



10.5.2.1. A set of sample to indicate the limit of acceptable quality level must be discussed by both us and customer when there is any dispute happened.10.5.2.2. New item must be added on time when it is necessary.

10.6.Inspection Specification

No.	Item	Criteria (Unit: mm)				
01	Black / White spot Foreign material (Round type) Pinholes Stain Particles inside cell. (Minor defect)	Area Size φ≤0.10 0.10<φ≤0.15 0.15<φ≤0.25 0.25<φ Total		Acc Igi	Acc. Qty Ignore 2 1 0 2 no include φ≤ 0.10	
02	Electrical Defect (Minor defect)	Bright dot Dark dot Total dot	isplay Area 0 N≤2 N≤2 t visible through 5	Total 0 N≤2 N≤2 N≤2 % ND filters.	Note1 Note 2 tem 1.	

Length and Width	Acc. Qty			
c > 3.0, b< 1.0	1			
c< 3.0, b< 1.0	3			
a <glass td="" thickness<=""></glass>				

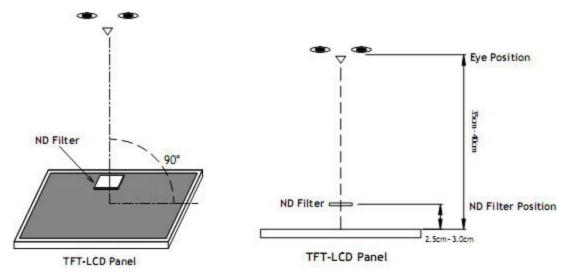
	Glass Chipping Rear of Pad Area:				
	(Minor defect)				
			Length and Width	Acc. Qty	
			c > 3.0, b< 1.0	1	
06			c< 3.0, b< 1.0	2	
			c< 3.0, b< 0.5	4	
	b c		a <glass td="" thic<=""><td>kness</td><td></td></glass>	kness	
	a				
	Glass Chipping Except Pad Area:				
	(Minor defect)	l .			
			Length and Width	Acc. Qty	
			c > 3.0, b< 1.0	1	
07			c< 3.0, b< 1.0	2	
	0 3		c< 3.0, b< 0.5	4	
	The state of the s		a <glass td="" thic<=""><td>kness</td><td></td></glass>	kness	
	a T				
	Glass Corner Chipping:				
	(Minor defect)	l ,			
			Length and Width	Acc. Qty	
			c < 3.0, b< 3.0	Ignore	
08			a <glass td="" thic<=""><td>kness</td><td></td></glass>	kness	
	b				
	a c				
	Glass Burr:				
	(Minor defect)				
			Length	Acc. Qty	
			F < 1.0	Ignore	
			burr don't affect as	semble and m	nodule
		dimen	sion.		
09	F				
	→ ←				

	FPC Defect:						
	(Minor defect)		40.4 Dant minhala.	مرين و والماوني			
	a _⊬_	_		10.1 Dent, pinhole width a <w 3.<="" td=""></w>			
10	w→ □		(w: circuitry width.)				
			10.2 Open circuit is	unacceptable.			
			10.3 No oxidation, o	contamination ar	nd distortion.		
	a !						
			Diameter	Acc. Qty			
	Bubble on Polarizer		φ≤0.20	Ignore			
11			0.20 <φ≤0.30	4			
	(Minor defect)		0.30 <φ≤0.50	1			
			0.50 < φ	None			
			Diameter	Acc. Qty			
			φ≤0.20	Ignore			
12	Dent on Polarizer		0.20 <φ≤0.30	4			
	(Minor defect)		0.30 <φ≤0.50	1			
			0.50 < φ	None			
		 13.1 No rust, dist	ortion on the Bezel.				
13	Bezel	13.2 No visible fingerprints, stains or other contamination.					
		10.2 140 4101010 11			··		
		14.1 No distortion	n or contamination on Po	CB terminals.			
		14.2 All compor	nents on PCB must sa	me as docume	nted on the		
14	PCB	BOM/component layout.					
			3 Follow IPC-A-600F.				
15	Soldering	Follow IPC-A-610C standard					
		The below defeat	to must be rejected				
			cts must be rejected.				
		16.1 Missing vertical / horizontal segment,					
		16.2 Abnormal Display.					
16	Electrical Defect	16.3 No function or no display.16.4 Current exceeds product specifications.					
10	(Major defect)			UI 15.			
		16.5 LCD viewing	-				
		16.6 No Backligh					
		16.7 Dark Backli					
		16.8 Touch Pane	ттю типсиоп.				

Remark: LCD Panel Broken shall be rejected. Defect out of LCD viewing area is acceptable.

10.7. Classification of Defects

- 10.7.1. Visual defects (Except no / wrong label) are treated as minor defect and electrical defect is major.
- 10.7.2. Two minor defects are equal to one major in lot sampling inspection.


10.8.Identification/marking criteria

Any unit with illegible / wrong /double or no marking/ label shall be rejected.

10.9.Packing

- 10.9.1. There should be no damage of the outside carton box, each packaging box should have one identical label.
- 10.9.2. Modules inside package box should have compliant mark.
- 10.9.3. All direct package materials shall offer ESD protection.

Note1: Bright dot is defined as the defective area of the dot is larger than 50% of one sub-pixel area.

Bright dot: The bright dot size defect at black display pattern. It can be recognized by 2% transparency of filter when the distance between eyes and panel is 350mm±50mm.

Dark dot: Cyan, Magenta or Yellow dot size defect at white display pattern. It can be recognized by 5% transparency of filter when the distance between eyes and panel is 350mm±50mm.

Note2: Mura on display which appears darker / brighter against background brightness on parts of display area.

11. Reliability Specification

No	ltem	Condition	Quantity	Criteria
1	High Temperature Operating	70℃, 96Hrs	2	GB/T2423.2 -2008
2	Low Temperature Operating	-20℃, 96Hrs	2	GB/T2423.1 -2008
3	High Humidity Storage	50℃, 90%RH, 96Hrs	2	GB/T2423.3 -2016
4	High Temperature Storage	80℃, 96Hrs	2	GB/T2423.2 -2008
5	Low Temperature Storage	-30℃, 96Hrs	2	GB/T2423.1 -2008
6	Thermal Cycling Test Storage	-20℃, 60min~70℃, 60min, 20 cycles.	2	GB/T2423.22 -2012
7	Packing vibration	Frequency range:10Hz~50Hz Acceleration of gravity:5G X, Y, Z 30 min for each direction.	-	GB/T5170.14 -2009
8	Electrical Static Discharge	Air: \pm 4KV 150pF/330 Ω 5 times	2	GB/T17626.2
	Lieotrical Static Discharge	Contact: \pm 2KV 150pF/330 Ω 5 times	2	-2018
9	Drop Test (Packaged)	Height:80 cm,1 corner, 3 edges, 6 surfaces.	-	GB/T2423.8 -1995

Note1. No defection cosmetic and operational function allowable.

Note2. Total current Consumption should be below double of initial value.

12. Precautions and Warranty

12.1. Safety

- 12.1.1. The liquid crystal in the LCD is poisonous. Do not put it in your mouth. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and water.
- 12.1.2. Since the liquid crystal cells are made of glass, do not apply strong impact on them. Handle with care.

12.2. Handling

- 12.2.1. Reverse and use within ratings in order to keep performance and prevent damage.
- 12.2.2. Do not wipe the polarizer with dry cloth, as it might cause scratch. If the surface of the LCD needs to be cleaned, wipe it swiftly with cotton or other soft cloth soaked with petroleum IPA, do not use other chemicals.

12.3. Storage

- 12.3.1. Do not store the LCD module beyond the specified temperature ranges.
- 12.3.2. Strong light exposure causes degradation of polarizer and color filter.

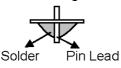
12.4. Metal Pin (Apply to Products with Metal Pins)

12.4.1. Pins of LCD and Backlight

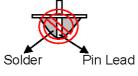
12.4.1.1. Solder tip can touch and press on the tip of Pin LEAD during the soldering

12.4.1.2. Recommended Soldering Conditions

Solder Type: Sn96.3~94-Ag3.3~4.3-Cu0.4~1.1


Maximum Solder Temperature: 370°C

Maximum Solder Time: 3s at the maximum temperature


Recommended Soldering Temp: 350±20°C

Typical Soldering Time: ≤3s

12.4.1.3. Solder Wetting

Recommended

Not Recommended

12.4.2. Pins of EL

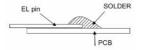
12.4.2.1. Solder tip can touch and press on the tip of EL leads during soldering.

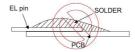
12.4.2.2. No Solder Paste on the soldering pad on the motherboard is recommended.

12.4.2.3. Recommended Soldering Conditions

Solder type: Nippon Alimit Leadfree SR-34, size 0.5mm

Recommended Solder Temperature: 270~290°C


Typical Soldering Time: ≤2s


Minimum solder distance from EL lamp (body):2.0mm

12.4.2.4. No horizontal press on the EL leads during soldering.

12.4.2.5. 180° bend EL leads three times is not allowed.

12.4.2.6. Solder Wetting

Recommended

Not Recommended

12.4.2.7. The type of the solder iron:

Recommended

Not Recommended

12.4.2.8. Solder Pad

12.5. Operation

- 12.5.1. Do not drive LCD with DC voltage
- 12.5.2. Response time will increase below lower temperature
- 12.5.3. Display may change color with different temperature
- 12.5.4. Mechanical disturbance during operation, such as pressing on the display area, may cause the segments to appear "fractured".
- 12.5.5. Do not connect or disconnect the LCM to or from the system when power is on.
- 12.5.6. Never use the LCM under abnormal condition of high temperature and high humidity.
- 12.5.7. Module has high frequency circuits. Sufficient suppression to the electromagnetic interface shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- 12.5.8. Do not display the fixed pattern for long time (we suggest the time not longer than one hour) because it will develop image sticking due to the TFT structure.

12.6. Static Electricity

- 12.6.1. CMOS LSIs are equipped in this unit, so care must be taken to avoid the electro-static charge, by ground human body, etc.
- 12.6.2. The normal static prevention measures should be observed for work clothes and benches.
- 12.6.3. The module should be kept into anti-static bags or other containers resistant to static for storage.

12.7.Limited Warranty

- 12.7.1. Our warranty liability is limited to repair and/or replacement. We will not be responsible for any consequential loss.
- 12.7.2. If possible, we suggest customer to use up all modules in six months. If the module storage time over twelve months, we suggest that recheck it before the module be used.
- 12.7.3. After the product shipped, any product quality issues must be feedback within three months, otherwise, we will not be responsible for the subsequent or consequential events.

13. Packaging

TBD