Modifications | PIN | SYMBOL | |-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------| | 1 | VCOM | 8 | D7 | 15 | D0 | 22 | C2P | 29 | C4P | 36 | VCAC | | 2 | CS | 9 | D6 | 16 | GND | 23 | C2M | 30 | C4M | 37 | DRV | | 3 | SDA | 10 | D5 | 17 | VCI | 24 | VINT1 | 31 | VGH | 38 | VLED-A | | 4 | SCL | 11 | D4 | 18 | IOVCC | 25 | C3P | 32 | VGL | 39 | VLED-K | | 5 | HSYNC | 12 | D3 | 19 | DVDD | 26 | СЗМ | 33 | AGND | 40 | VCOM | | 6 | VSYNC | 13 | D2 | 20 | C1P | 27 | VINT4 | 34 | FRP | | | | 7 | DCLK | 14 | D1 | 21 | C1M | 28 | VINT3 | 35 | COMDC | | | #### NOTES: - 1.Display type:2.7"TFT - 2. Viewing direction: FULL VIEWING - 3.Polarizer mode:Transmissive/Normal black - 4.Operation temperature:-20°C~+70°C - 5.Storage temperature:-30°C~+80°C - 6.Dirver IC:ILI8961 - 7.Power supply voltage:3.3V - 8.Backlight :White(6 LED)/18.6V(TYP)/20mA - 9.Brightness:700cd/m2TYP) - 10.ROHS must be complied - * Unspecification tolerance are ±0.2mm ## Compliance: RohS III (2015/863/EU) | Tolerances: | Date | Name | | | | |-------------|------|------|-------|----|--| | | | | 06/24 | dr | Date Name YDP LCD I 270 SR knitter-switch 30 54 37 Page 1/24 # **PRODUCT SPECIFICATION** # 2.7" TFT LCD MODULE MODEL: YDP LCD | 270 SR Ver:1.0 | < 🔷 > | Proliminary | Specification | |---------------|---------------|---------------| | \ \/ / | rieiiiiiiiaiy | Specification | < >> Finally Specification | | CUSTOMER'S | SAPPROVAL | |-----------|------------|-----------| | CUSTOMER: | | | | SIG | NATURE: | DATE: | | | | | | | | | | | | | | | | | | APPROVED | РМ | PD | PREPARED | |----------------------|----------|----------|-------------------| | ВҮ | REVIEWED | REVIEWED | ВҮ | | TFT S. G. H 20220826 | | | TFT L. Q 20220826 | # **Revision History** | Revision | Date | Originator | Detail | Remarks | |----------|------------|------------|-----------------|---------| | 1.0 | 2022.08.26 | LQ | Initial Release | ## **Table of Contents** | 16 | ible of Contents | | |----|--|------| | No | o. Item | Page | | 1. | General Description | 4 | | 2. | Module Parameter | 4 | | 3. | Absolute Maximum Ratings | 4 | | 4. | DC Characteristics | 5 | | 5. | Backlight Characteristic | 5 | | | 5.1. Backlight Characteristics | 5 | | | 5.2. Backlighting circuit | 5 | | 6. | Optical Characteristics | 6 | | | 6.1. Optical Characteristics | 6 | | | 6.2. Definition of Response Time | 6 | | | 6.3. Definition of Contrast Ratio | 7 | | | 6.4. Definition of Viewing Angles | 7 | | | 6.5. Definition of Color Appearance | 8 | | | 6.6. Definition of Surface Luminance, Uniformity and Transmittance | 88 | | 7. | Block Diagram and Power Supply | 9 | | 8. | Interface Pins Definition | 10 | | 9. | AC Characteristics | 11 | | | 9.1. 3-wire Serial Interface | 11 | | | 9.2. Input Timing Chart | 12 | | | 9.3. Power On/Off Sequence | 13 | | 10 | . Quality Assurance | 14 | | | 10.1. Purpose | 14 | | | 10.2. Standard for Quality Test | 14 | | | 10.3. Nonconforming Analysis & Disposition | 14 | | | 10.4. Agreement Items | 14 | | | 10.5. Standard of the Product Visual Inspection | 14 | | | 10.6. Inspection Specification | 15 | | | 10.7. Classification of Defects | 19 | | | 10.8. Identification/marking criteria | 19 | | | 10.9. Packaging | 19 | | 11 | . Reliability Specification | 20 | | 12 | . Precautions and Warranty | 21 | | | 12.1. Safety | 21 | | | 12.2. Handling | 21 | | | 12.3. Storage | 21 | | | 12.4. Metal Pin (Apply to Products with Metal Pins) | 21 | | | 12.5. Operation | 22 | | | 12.6. Static Electricity | 22 | | | 12.7. Limited Warranty | 22 | | 13 | . Packaging | 23 | ## 1. General Description The specification is a transmissive type color active matrix liquid crystal display (LCD) which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT-LCD panel, driver ICs and a backlight unit. ## 2. Module Parameter | Features | Details | Unit | |-----------------------------|---|--------| | Display Size(Diagonal) | 2.7" | | | LCD type | IPS TFT | | | Display Mode | Transmissive /Normally Black | | | Resolution | 320 RGB x 240 | Pixels | | View Direction | FULL VIEWING | | | Module Outline | 67.17 (H) x 39.10 (V) x 2.06(T) (Note1) | mm | | Active Area | 58.8 (H) x33.06 (V) | mm | | Pixel Size | 183.75 x137.75 | um | | Pixel Arrangement | RGB Delta Stripe | | | Display Colors | 262K | | | Interface | 3-wire SPI+8-bit RGB interface | | | With or without touch panel | Without | | | Driver IC | IL18961 | - | | Operating Temperature | -20~70 | °C | | Storage Temperature | -30~80 | °C | | Weight | 9 | g | Note 1: Exclusive hooks, posts, FFC/FPC tail etc. ## 3. Absolute Maximum Ratings Vss=0V, Ta=25°C | ltem | Symbol | Min. | Max. | Unit | |-----------------------|------------------|------|---------|------| | Power Supply Voltage | VCI | -0.3 | 5.0 | V | | I/O Supply Voltage | IOVCC | -0.3 | VCI+0.3 | V | | Storage temperature | T _{STG} | -30 | +80 | °C | | Operating temperature | T _{OP} | -20 | +70 | °C | Note 1: If Ta below 50°C, the maximal humidity is 90%RH, if Ta over 50°C, absolute humidity should be less than 60%RH. Note 2: The response time will be extremely slow when the operating temperature is around -10 $^{\circ}$ C, and the back ground will become darker at high temperature operating. ## 4. DC Characteristics | Item | Symbol | Min. | Тур. | Max. | Unit | Conditions | |----------------------------------|--------------------------|-----------|------|-----------|------|------------| | Power Supply Voltage | VCI | 2.7 | 3.3 | 3.6 | V | | | I/O Supply Voltage | IOVCC | 1.65 | 1 | VCI | V | | | | VGH | - | 15 | - | V | | | Supply Voltage | VGL | - | -10 | - | V | | | | VCOM | 1 | 0 | - | V | | | Logic Low input voltage | V _{IL} | GND | ı | 0.3*IOVCC | V | | | Logic High input voltage | V _{IH} | 0.7*IOVCC | ī | IOVCC | V | | | Current Consumption
All White | I _{VCI+} IIOVCC | - | 20 | - | mA | | Note 1: Typical VCOM is only a reference value, it must be optimized according to each LCM. Be sure to use VR. ## 5. Backlight Characteristic ## 5.1. Backlight Characteristics | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | |------------------------|--------|------------------------------------|---------------|--------|------|------| | Forward Voltage | VF | Ta=25 °C, I _F =20mA/LED | 16.8 | 18.6 | 20.4 | V | | Forward Current | lF | Ta=25 °C, V _F =3.1V/LED | - | 20 | - | mA | | Power dissipation | Po | | - | 372 | - | mW | | Uniformity | Avg | | - | 80 | - | % | | LED working life(25°C) | - | | - | 30,000 | - | Hrs | | Drive method | | Constant current | | | | | | LED Configuration | | 6 White LI | EDs in string | | | | Note1: LED life time defined as follows: The final brightness is at 50% of original brightness. The environmental conducted under ambient air flow, at Ta=25±2 °C,60%RH±5%, I_F=20mA/LED. ## 5.2. Backlighting circuit ## 6. Optical Characteristics ## 6.1. Optical Characteristics Ta=25°C, VCI=3.3V | | ī | | | | S | pecification | on | | |---------------------|-------------------------------------|------------|--------|---|-------|--------------|-------|-------| | | Iter | n | Symbol | Condition | Min. | Тур. | Max. | Unit | | | Luminar | nce on | | | | | | | | | TFT(I_f =20 | mA/LED) | Lv | Normally | 560 | 700 | - | cd/m² | | de) | Contrast rati | o(See 6.3) | CR | viewing angle $\theta x = \phi y = 0^{\circ}$ | 700 | 1200 | - | | | ve Mo | Response time
(See 6.2) | | TR+TF | θχ – ψΥ –υ* | - | 30 | 40 | ms | | (Transmissive Mode) | Chromaticity Transmissive (See 6.5) | Red | XR | | 0.569 | 0.619 | 0.669 | | | | | Neu | YR | | 0.298 | 0.348 | 0.398 | | | | | ssive | ΧG | | 0.270 | 0.320 | 0.370 | | | | | | YG | | 0.564 | 0.614 | 0.664 | | | Backlight On | | | Хв | | 0.083 | 0.133 | 0.183 | | | ight | (000 0.0) | | Yв | | 0.024 | 0.074 | 0.124 | | | ckli | | White | Xw | | 0.229 | 0.279 | 0.329 | | | Ba | | vviile | Yw | | 0.257 | 0.307 | 0.357 | | | | Viewing | Horizontal | θx+ | | 70 | 80 | - | | | | Angle | Tionzontai | θx- | Center CR≥10 | 70 | 80 | - | Dog | | | (See 6.4) | Vertical | фҮ+ | | 70 | 80 | - | Deg. | | | (000 0.4) | vertical | φY- | | 70 | 80 | - | | | | NTSC Ratio | o(Gamut) | | | 55 | 60.4 | - | % | ## 6.2. Definition of Response Time ## 6.2.1. Normally Black Type (Negative) Tr is the time it takes to change form non-selected stage with relative luminance 10% to selected state with relative luminance 90%; Tf is the time it takes to change from selected state with relative luminance 90% to non-selected state with relative luminance 10%. Note: Measuring machine: LCD-5100 ## 6.2.2. Normally White Type (Positive) Tr is the time it takes to change form non-selected stage with relative luminance 90% to selected state with relative luminance 10%; Tf is the time it takes to change from selected state with relative luminance 10% to non-selected state with relative luminance 90%; Note: Measuring machine: LCD-5100 or EQUI #### 6.3. Definition of Contrast Ratio Contrast is measured perpendicular to display surface in reflective and transmissive mode. The measurement condition is: | Measuring Equipment | Eldim or Equivalent | | |--------------------------|--------------------------|--| | Measuring Point Diameter | 3mm//1mm | | | Measuring Point Location | Active Area centre point | | | Toot nottorn | A: All Pixels white | | | Test pattern | B: All Pixel black | | | Contrast setting | Maximum | | Definitions: CR (Contrast) = Luminance of White Pixel / Luminance of Black Pixel #### 6.4. Definition of Viewing Angles #### 6.5. Definition of Color Appearance R, G, B and W are defined by (x, y) on the IE chromaticity diagram NTSC=area of RGB triangle/area of NTSC triangleX100% Measuring picture: Red, Green, Blue and White (Measuring machine: BM-7) ### 6.6. Definition of Surface Luminance, Uniformity and Transmittance Using the transmissive mode measurement approach, measure the white screen luminance of the display panel and backlight. - 6.6.1. Surface Luminance: L_V = average (L_{P1} : L_{P9}) - 6.6.2. Uniformity = Minimal $(L_{P1}:L_{P9})$ / Maximal $(L_{P1}:L_{P9})$ * 100% - 6.6.3. Transmittance = L_V on LCD / L_V on Backlight * 100% Note: Measuring machine: BM-7 ## 7. Block Diagram and Power Supply ## 8. Interface Pins Definition | 8. | . Interface Pins Definition | | | | | |-----|-----------------------------|--|--------|--|--| | No. | Symbol | Function | Remark | | | | 1 | VCOM | Panel common voltage | | | | | 2 | CS | Chip select signal. | | | | | 3 | SDA | Serial command date input | | | | | 4 | SCL | Serial command clock input | | | | | 5 | HSYNC | Horizontal Sync input | | | | | 6 | VSYNC | Vertical Sync input | | | | | 7 | DCLK | Data clock input | | | | | 8 | D7 | Data input | | | | | 9 | D6 | Data input | | | | | 10 | D5 | Data input | | | | | 11 | D4 | Data input | | | | | 12 | D3 | Data input | | | | | 13 | D2 | Data input | | | | | 14 | D1 | Data input | | | | | 15 | D0 | Data input | | | | | 16 | GND | Ground | | | | | 17 | VCI | Power supply for charge pump circuits. | | | | | 18 | IOVCC | Power supply for digital interface. | | | | | 19 | DVDD | Power setting capacitor connecting pins.(internal core use, typical 1.8 V) | | | | | 20 | C1P | Charge pump Power GND | | | | | 21 | C1M | Charge pump Power GND | | | | | 22 | C2P | Charge pump Power GND | | | | | 23 | C2M | Charge pump Power GND | | | | | 24 | VINT1 | Charge pump Power GND | | | | | 25 | C3P | Charge pump Power GND | | | | | 26 | C3M | Charge pump Power GND | | | | | 27 | VINT4 | No connection | | | | | 28 | VINT3 | No connection | | | | | 29 | C4P | Charge pump Power GND | | | | | 30 | C4M | Charge pump Power GND | | | | | 31 | VGH | Power setting capacitor connect pin | | | | | 32 | VGL | Power setting capacitor connect pin | | | | | 33 | AGND | Ground for analog circuit. | | | | | 34 | FRP | Frame polarity output for panel VCOM | | | | | 35 | COMDC | VCOM DC output. | | | | | 36 | VCAC | Power setting capacitor for VCOM AC. | | | | | 37 | DRV | Power transistor signal for back light power boost converter. | | | | | 38 | VLED-A | LED power anode | | | | | 39 | VLED-K | LED power cathode | | | | | 40 | VCOM | Panel common voltage | | | | #### 9. AC Characteristics #### 9.1. 3-wire Serial Interface #### 3-Wire Serial command format - Each serial command consists of 16 bits of data that is loaded one bit a time at the rising edge of serial clock SPCK. Command loading operation starts from the falling edge of SPENB and is completed at the next rising edge of SPENB. - The serial control block is operational after power on reset, but commands are established by the VSD signal. If command is transferred multiple times for the same register, the last command before the VSD signal is valid. - If less than 16 bits of SPCK are input while SPENB is low, the transferred data is ignored. - If 16 bits or more of SPCK are input while SPENB is low, the first 16 bits of transferred data before the rising edge of SPENB pulse are valid data. - Serial block operates with the SPCK clock. - Serial data can be accepted in the power save modes. #### Seiral Interface Write Sequence ### Serial Interface Read Sequence ## Serial Control Timing | Item | symbol | Min. | Тур. | Max. | Unit | |------------------------------|--------|------|------|------|------| | SPENB input setup time | tS0 | 50 | | | ns | | Serial data input setup time | tS1 | 50 | Y | | ns | | SPENB input hold time | tH0 | 50 | V | | ns | | Serial Data Input hold time | tH1 | 50 | × | | ns | | SPCK pulse high width | tWH1 | 50 | ¥ | | ns | | SPCK pulse low width | tWL1 | 50 | | | ns | | SPENB pulse high width | tW2 | 400 | | | ns | ## 9.2. Input Timing Chart ## 9.2.1. 8-bit RGB Input Timing Chart ## 9.2.2. 8-bit RGB Input Timing | Parameter | | Oh el | Interface | | | Unit | |-----------------------|------------|--------|-----------|-------|-----------|-------| | | | Symbol | Min. | Тур. | Typ. Max. | | | CLKIN frequency | | fCLKIN | - | 6.2 | 7.5 | MHz | | HSD period | | tH | - | 390 | - | CLKIN | | HSD display period | | tHD | | 320 | | CLKIN | | HSD back porch | | tHBP | 40 | 61 | 29 | CLKIN | | HSD front porch | | tHFP | | 9 | - | CLKIN | | HSD pulse width | | tHSW | 2 | 1 | - | CLKIN | | VSD period time | | tV | = | 262.5 | - | Н | | Vertical display area | 100 | tVD | | 240 | 100 | Н | | /SD | Odd field | tVBP | =] | 21 | - | Н | | ack porch | Even field | IVBP | - | 21.5 | - | 1 " | | /SD | Odd field | tVFP | = 1 | 1.5 | | Н | | ront porch | Even field | IVFP | - | 1 | | н | | VSD pulse width | | tVSW | - | 1 | -1 | CLKIN | | Frame | | | - | 525 | | Н | ## 9.3. Power On/Off Sequence ## 9.3.1. Power On Sequence ## 9.3.2. Power Off Sequence ## 10. Quality Assurance #### 10.1.Purpose This standard for Quality Assurance assures the quality of LCD module products supplied to customer. #### 10.2. Standard for Quality Test 10.2.1. Sampling Plan: GB2828.1-2012 Single sampling, general inspection level II 10.2.2. Sampling Criteria: Visual inspection: AQL 1.5 Electrical functional: AQL 0.65. 10.2.3. Reliability Test: Detailed requirement refer to Reliability Test Specification. #### 10.3. Nonconforming Analysis & Disposition - 10.3.1. Nonconforming analysis: - 10.3.1.1. Customer should provide overall information of non-conforming sample for their complaints. - 10.3.1.2. After receipt of detailed information from customer, the analysis of nonconforming parts usually should be finished in one week. - 10.3.1.3. If can not finish the analysis on time, customer will be notified with the progress status. - 10.3.2. Disposition of nonconforming: - 10.3.2.1. Non-conforming product over PPM level will be replaced. - 10.3.2.2. The cause of non-conformance will be analyzed. Corrective action will be discussed and implemented. #### 10.4. Agreement Items Shall negotiate with customer if the following situation occurs: - 10.4.1. There is any discrepancy in standard of quality assurance. - 10.4.2. Additional requirement to be added in product specification. - 10.4.3. Any other special problem. #### 10.5. Standard of the Product Visual Inspection - 10.5.1. Appearance inspection: - 10.5.1.1. The inspection must be under illumination about $1000 1500 \, lx$, and the distance of view must be at $30 \, cm \pm 2 \, cm$. - 10.5.1.2. The viewing angle should be 45° from the vertical line without reflection light or follows customer's viewing angle specifications. 10.5.1.3. Definition of area: A Zone: Active Area, B Zone: Viewing Area, 10.5.2. Basic principle: 10.5.2.1. A set of sample to indicate the limit of acceptable quality level must be discussed by both us and customer when there is any dispute happened. 10.5.2.2. New item must be added on time when it is necessary. ## 10.6.Inspection Specification | No. | Item | Criteria (Unit: mm) | | | | | |-----|---|--|--------------------|--|---|--| | 01 | Black / White spot Foreign material (Round type) Pinholes Stain Particles inside cell. (Minor defect) | φ= (a + b) /2 Distance between 2 defe | 0.10
0.15
0. | Area 2≤0.10 <φ≤0.15 <φ≤0.25 .25<φ Total e than 3mm a | Acc. Qty Ignore 2 1 0 2 no include φ≤ 0.10 | | | 02 | Electrical Defect
(Minor defect) | Dark dot N≤2 N≤2 Total dot N≤2 N≤2 | | | | | Black and White line | ` | | | |---------|---------------------|----------| | Length | Width | Acc. Qty | | 1 | W ≦ 0.03 | Ignore | | L ≦ 2.5 | $0.03 < W \le 0.05$ | 3 | | L ≦ 2.5 | $0.05 < W \le 0.10$ | 2 | | 1 | 0.1 < W | | | | 3 | | Distance between 2 defects should more than 3mm apart. Scratches not viewable through the back of the display are acceptable. 04 Glass Crack (Minor defect) Scratch Foreign material (Line type) (Minor defect) Crack is potential to enlarge, any type is not allowed. 05 | Length and Width | Acc. Qty | | | | |---------------------------------------|----------|--|--|--| | c > 3.0, b< 1.0 | 1 | | | | | c< 3.0, b< 1.0 | 3 | | | | | a <glass td="" thickness<=""></glass> | | | | | 06 Glass Chipping Rear of Pad Area: (Minor defect) | Length and Width | Acc. Qty | | | | |---------------------------------------|----------|--|--|--| | c > 3.0, b< 1.0 | 1 | | | | | c< 3.0, b< 1.0 | 2 | | | | | c< 3.0, b< 0.5 4 | | | | | | a <glass td="" thickness<=""></glass> | | | | | | F | | |---|--| | | | 09 | Glass | burr | don't | affect | assemble | and | module | |--------|------|-------|--------|----------|-----|--------| | dimane | sion | | | | | | dimension. | 10 | FPC Defect: (Minor defect) | | (w: circuitry width.) 10.2 Open circuit is | 10.1 Dent, pinhole width a<w 3.<="" li="">(w: circuitry width.)10.2 Open circuit is unacceptable.10.3 No oxidation, contamination and distortion.</w> | | | |-------|--|--|--|--|--------------|--| | 11 | Bubble on
Polarizer
(Minor defect) | | Diameter
φ≤0.20
0.20 <φ≤0.30
0.30 <φ≤0.50
0.50 < φ | Acc. Qty Ignore 4 1 None | | | | 12 | Dent on Polarizer
(Minor defect) | | Diameter
φ≤0.20
0.20 <φ≤0.30
0.30 <φ≤0.50
0.50 < φ | Acc. Qty Ignore 4 1 None | | | | 13 | Bezel | 13.1 No rust, distortion on the Bezel. 13.2 No visible fingerprints, stains or other contamination. | | | | | | 14 | PCB | 14.1 No distortion or contamination on PCB terminals. 14.2 All components on PCB must same as documented on the BOM/component layout. 14.3 Follow IPC-A-600F. | | | ented on the | | | 15 | Soldering | Follow IPC-A-6100 | C standard | | | | | 16 | Electrical Defect
(Major defect) | The below defects must be rejected. 16.1 Missing vertical / horizontal segment, 16.2 Abnormal Display. 16.3 No function or no display. 16.4 Current exceeds product specifications. 16.5 LCD viewing angle defect. 16.6 No Backlight. 16.7 Dark Backlight. 16.8 Touch Panel no function. | | | | | | Remar | k: LCD Panel Broke | en shall be rejected. | Defect out of LCD view | ring area is acce | eptable. | | #### 10.7. Classification of Defects - 10.7.1. Visual defects (Except no / wrong label) are treated as minor defect and electrical defect is major. - 10.7.2. Two minor defects are equal to one major in lot sampling inspection. ### 10.8.Identification/marking criteria Any unit with illegible / wrong /double or no marking/ label shall be rejected. #### 10.9. Packaging - 10.9.1. There should be no damage of the outside carton box, each packaging box should have one identical label. - 10.9.2. Modules inside package box should have compliant mark. - 10.9.3. All direct package materials shall offer ESD protection. Note1: Bright dot is defined as the defective area of the dot is larger than 50% of one sub-pixel area. Bright dot: The bright dot size defect at black display pattern. It can be recognized by 2% transparency of filter when the distance between eyes and panel is $350 \text{mm} \pm 50 \text{mm}$. Dark dot: Cyan, Magenta or Yellow dot size defect at white display pattern. It can be recognized by 5% transparency of filter when the distance between eyes and panel is $350 \text{mm} \pm 50 \text{mm}$. **Note2:** Mura on display which appears darker / brighter against background brightness on parts of display area. # 11. Reliability Specification | No | Item | Condition | Quantity | Criteria | |----|------------------------------|---|----------|----------------------| | 1 | High Temperature Operating | 70 ℃, 96Hrs | 2 | GB/T2423.2
-2008 | | 2 | Low Temperature Operating | -20℃, 96Hrs | 2 | GB/T2423.1
-2008 | | 3 | High Humidity Storage | 50℃, 90%RH, 96Hrs | 2 | GB/T2423.3
-2016 | | 4 | High Temperature Storage | 80℃, 96Hrs | 2 | GB/T2423.2
-2008 | | 5 | Low Temperature Storage | -30℃, 96Hrs | 2 | GB/T2423.1
-2008 | | 6 | Thermal Cycling Test Storage | -20℃, 60min~ 70℃, 60min,
20 cycles. | 2 | GB/T2423.22
-2012 | | 7 | Packing vibration | Frequency range:10Hz~50Hz Acceleration of gravity:5G X, Y, Z 15 min for each direction. | - | GB/T5170.14
-2009 | | 0 | Electrical Static Discharge | Air: ±4KV 150pF/330 Ω 5 times | - 2 | GB/T17626.2
-2018 | | 8 | | Contact: ±2KV 150pF/330 Ω 5 times | | | | 9 | Drop Test
(Packaged) | Height:70 cm,1 corner, 3 edges, 6 surfaces. | - | GB/T2423.8
-1995 | Note1. No defection cosmetic and operational function allowable. Note2. Total current Consumption should be below double of initial value ## 12. Precautions and Warranty ### 12.1.Safety - 12.1.1. The liquid crystal in the LCD is poisonous. Do not put it in your mouth. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and water. - 12.1.2. Since the liquid crystal cells are made of glass, do not apply strong impact on them. Handle with care. ## 12.2. Handling - 12.2.1. Reverse and use within ratings in order to keep performance and prevent damage. - 12.2.2. Do not wipe the polarizer with dry cloth, as it might cause scratch. If the surface of the LCD needs to be cleaned, wipe it swiftly with cotton or other soft cloth soaked with petroleum IPA, do not use other chemicals. #### 12.3.Storage - 12.3.1. Do not store the LCD module beyond the specified temperature ranges. - 12.3.2. Strong light exposure causes degradation of polarizer and color filter. ## 12.4.Metal Pin (Apply to Products with Metal Pins) - 12.4.1. Pins of LCD and Backlight - 12.4.1.1. Solder tip can touch and press on the tip of Pin LEAD during the soldering - 12.4.1.2. Recommended Soldering Conditions Solder Type: Sn96.3~94-Ag3.3~4.3-Cu0.4~1.1 Maximum Solder Temperature: 370 °C Maximum Solder Time: 3s at the maximum temperature Recommended Soldering Temp: 350±20 ℃ Typical Soldering Time: ≤3s 12.4.1.3. Solder Wetting Recommended #### 12.4.2. Pins of EL - 12.4.2.1. Solder tip can touch and press on the tip of EL leads during soldering. - 12.4.2.2. No Solder Paste on the soldering pad on the motherboard is recommended. - 12.4.2.3. Recommended Soldering Conditions Solder type: Nippon Alimit Leadfree SR-34, size 0.5mm Recommended Solder Temperature: 270~290 ℃ Typical Soldering Time: ≤2s Minimum solder distance from EL lamp (body):2.0mm - 12.4.2.4. No horizontal press on the EL leads during soldering. - 12.4.2.5. 180° bend EL leads three times is not allowed. #### 12.4.2.6. Solder Wetting Recommended Not Recommended 12.4.2.7. The type of the solder iron: Recommended Not Recommended 12.4.2.8. Solder Pad #### 12.5. Operation - 12.5.1. Do not drive LCD with DC voltage - 12.5.2. Response time will increase below lower temperature - 12.5.3. Display may change color with different temperature - 12.5.4. Mechanical disturbance during operation, such as pressing on the display area, may cause the segments to appear "fractured". - 12.5.5. Do not connect or disconnect the LCM to or from the system when power is on. - 12.5.6. Never use the LCM under abnormal condition of high temperature and high humidity. - 12.5.7. Module has high frequency circuits. Sufficient suppression to the electromagnetic interface shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference. - 12.5.8. Do not display the fixed pattern for long time (we suggest the time not longer than one hour) because it will develop image sticking due to the TFT structure. #### 12.6. Static Electricity - 12.6.1. CMOS LSIs are equipped in this unit, so care must be taken to avoid the electro-static charge, by ground human body, etc. - 12.6.2. The normal static prevention measures should be observed for work clothes and benches. - 12.6.3. The module should be kept into anti-static bags or other containers resistant to static for storage. #### 12.7.Limited Warranty - 12.7.1. Our warranty liability is limited to repair and/or replacement. We will not be responsible for any consequential loss. - 12.7.2. If possible, we suggest customer to use up all modules in six months. If the module storage time over twelve months, we suggest that recheck it before the module be used. - 12.7.3. After the product shipped, any product quality issues must be feedback within three months, otherwise, we will not be responsible for the subsequent or consequential events. # 13. Packaging TBD